FIRE CATПерсональный сайт Соловьевой О.Г. информацию по содержанию сайта можно отправить по адресу:E-mail: corner2010 @yandex.ru |
по материалам сайта http://bio.fizteh.ru Считается, что все наземные растения, существующие сейчас, произошли от риниофитов (тип споровых растений, составленный самыми примитивными сосудистыми формами). Сейчас наземные растения представлены моховидными, псилотовидными, плауновидными, хвощевидными, папоротниковидными, голосеменными и цветковыми растениями. Предполагается, что предками всех существующих растений были водоросли, в частности, зеленые. Для того, чтобы выйти на сушу, растениям надо было решить ряд проблем. Во-первых, в воде менее сильно действует гравитация на тело, поэтому ему нужно было иметь какую-то определенную форму тела, и в итоге, приобрести опору. Необходимые для фотосинтеза диоксид углерода, свет и вода находятся в двух средах – воздушной и почвенной. Поэтому нужно, чтобы часть растения находилась в почве, а часть – в воздушной среде, то есть одновременно они должны присутствовать в двух средах. Кроме того, чтобы проводить воду из почвы вверх, должна была появиться транспортная система. Следующая задача заключалась в защите от обезвоживания. Сухопутная среда способствует обезвоживанию, поэтому растения должны были прибрести приспособления для добывания и сохранения воды. Для фотосинтеза и дыхания нужно, чтобы газообмен происходил не с раствором (как в случае с водорослями), а с воздушной средой. Для этого у растений существуют такие образования – устьица. Нежные половые клетки должны быть защищены, а мужские гаметы – подвижные сперматозоиды – могут двигаться только в воде. В процессе эволюции произошел переход к образованию неподвижных мужских гамет – спермиев и доставке их к яйцеклетке с помощью пыльцевой трубки. Выше упоминалось о необходимости защиты от обезвоживания. Как же растения справлялись с этой задачей? Оказалось, что первые растения были покрыты толстым слоем воскоподобного вещества кутина, то есть они защищались от обезвоживания кутикулой. Затем в процессе эволюции появилась ткань эпидермис. Если кутикула покрывала все тело, то она защищала его от обезвоживания, но при этом должны были появиться приспособления для газообмена.
Они и появились в виде ткани эпидермиса. Он состоит из плотно пригнанных друг к другу клеток. Иногда они еще имеют изогнутые клетки, и плотно соединяются между собой. Эти клетки выделяют наружу кутикулу, но для того, чтобы осуществлялся газообмен, существуют такие остроумные приспособления, которые называются устьица. Они очень интересно устроены, и механизм их работы довольно интересен. Полукруглые клетки, которые видны на рисунке, называются замыкающими клетками устьиц. Та их сторона, которая обращена к щели, более утолщена по сравнению с остальными тонкими стенками. Они содержит хлоропласты и способны осуществлять фотосинтез. В тот момент, когда начинается работа хлоропластов, накапливаются углеводы, их концентрация увеличивается, соответственно, концентрация воды уменьшается, и в это время начинает поступать вода из окружающих клеток. Поскольку эти замыкающие клетки устьиц по-разному утолщены, то они выпячиваются в ту сторону, где стенка толще. Так происходит раскрытие устьиц, туда поступает углекислый газ, выделяется кислород, то есть происходит газообмен. Какую форму было целесообразно иметь растениям при выходе на сушу? При плоской форме нет надобности развивать опору, она благоприятна для фотосинтеза, поскольку свет и диоксид углерода улавливаются поверхностью. Но в этом случае растения быстро бы закрыли всю поверхность суши. Поскольку таких растений сейчас немного, видимо, более целесообразной оказалась такая цилиндрическая, радиальная, разветвленная форма тела. Такую форму, конечно, нужно было поддерживать, поэтому в процессе эволюции выработалась опора. Какую форму было целесообразно иметь растениям при выходе на сушу? При плоской форме нет надобности развивать опору, она благоприятна для фотосинтеза, поскольку свет и диоксид углерода улавливаются поверхностью. Но в этом случае растения быстро бы закрыли всю поверхность суши. Поскольку таких растений сейчас немного, видимо, более целесообразной оказалась такая цилиндрическая, радиальная, разветвленная форма тела. Такую форму, конечно, нужно было поддерживать, поэтому в процессе эволюции выработалась опора. Для осуществления фотосинтеза эта форма тела не самая удобная. При цилиндрической форме тела увеличение фотосинтезирующей поверхности возможно при росте тела. Но при этом объем увеличивается как куб, а поверхность – как квадрат линейного прироста. Увеличения фотосинтезирующей поверхности можно достичь образованием плоских органов – листьев. В процессе эволюции у разных растений появились разные листья, разного происхождения. Одни из них пошли по более простому пути – это просто выросты покровных тканей. Одно-, двухслойные листья, как у мхов и плаунов. Но они не могут достигать больших размеров, поэтому они оказались не очень эффективными. Другие листья образовались из разветвленных осей путем дальнейшего их уплощения. То есть, листья представляют собой уплощенные ветки. Эти плоские ветки особенно хорошо представлены у папоротников. Здесь целые системы осей образовывали листья, поэтому они могут быть такими большими, разветвленными. У голосеменных и цветковых листья образовались из уплощенных конечных веточек. Что касается опоры. Для поддержания вертикального положения тела растения необходимо было появление опоры. Эта опора появилась в виде механических тканей. Она состоит из длинных клеток с очень утолщенными стенками. Причем стенки пропитаны веществом лигнином, которое придает им дополнительную прочность. На рисунке ниже видно, что внутренняя часть этих клеток совсем невелика по сравнению со стенками. Кроме того, клетки, приобретшие такие толстые стенки, не могут быть живыми. То есть эти ткани выполняют свои функции только в мертвом состоянии. Что касается транспортной системы - она должна быть двух типов. Одна должна проводить воду от корней к листьям, а другая – проводить вещества, образовавшиеся в листьях к разным органам растений. Ткани, по которым идет восходящий ток (то есть вода с растворенными в ней минеральными веществами) называется ксилемой. На рисунке ксилема окрашена красным цветом. Кроме того, что эта ткань проводит воду, она еще выполняет дополнительную опорную функцию. В некоторых случаях только она является той укрепляющей опорой, которая поддерживает растение, это особенно важно для тех растений, у которых нет механических тканей, а есть только ксилема, которая выполняет сразу две функции. Клетки ксилемы тоже могут действовать только в мертвом состоянии. Для того, чтобы вода проходила беспрепятственно, содержимое клетки отмирает, и вода поступает наверх по капиллярному типу. Вторая ткань – это флоэма. Она осуществляет проведение того, что образовалось в листьях ко всем органам, которым нужны эти вещества – это нисходящий ток. У флоэмы клетки в живом состоянии проводят эти вещества. Эта ткань мягкая, так как стенки клеток не одревесневшие. Что касается размножения. Для начала расскажем общие положения. У всех наземных растений в жизненном цикле, то есть проходящем от зиготы (оплодотворенной яйцеклетки) одного растения до зиготы другого, происходит закономерное и ритмичное чередование двух фаз или поколений: бесполого диплоидного (т.е. содержащего двойной набор хромосом) поколения, который называется спорофит, и полового гаплоидного (т.е. содержат одинарный набор хромосом) – гаметофит. Спорофит производит споры, при образовании спор происходит мейоз, поэтому споры гаплоидные.
|
по материалам сайта http://bio.fizteh.ru Обзорная лекция по эволюции растенийРастения – это фотоавтотрофные эукариоты. Это значит, что растения создают органические вещества своего тела из простых неорганических соединений – диоксида углерода (СО2) и воды (Н2О) под действием света. Синтез органических веществ из неорганических происходит под действием света при участии зеленого пигмента хлорофилла. Этот процесс называется фотосинтезом. Фотосинтез – сложный процесс, который происходит в несколько этапов. В качестве побочного продукта фотосинтеза выделяется кислород. Поэтому растения очень важны для нас, так как являются производителями кислорода на Земле. Царство Растения включает в себя приблизительно 400 000 видов и делится на две большие группы , так называемые, подцарства– низшие растения (водоросли) и высшие растения (наземные). Водоросли – это, вообще говоря, растения, живущие в воде. Но для ботаника это слово значит нечто большее. Это растения, которые устроены определенным образом. Тело водорослей представлено одной клеткой или нерасчлененным на органы слоевищем, то есть у водорослей клетки не дифференцированы. Тело высших растений в той или иной мере расчленено на органы – корень, стебель, лист. Водоросли – это низшие растения, населяющие, в основном, водную среду. Это могут быть совершенно разные водоемы: текучие, стоячие, соленые, пресные. Но не обязательно только водоемы, потому что водоросли могут жить и на суше в пленке воды. В основном, это почвенные водоросли и водоросли, обитающие на других растениях. Ниже на картинках изображены представители одноклеточных водорослей. Чем замечательны диатомовые водоросли? Во-первых, их тело состоит из одной клетки, а во-вторых, эта клетка заключена в прозрачный панцирь. Причем панцири бывают украшены различными рисунками, и по этим рисункам водоросли и различаются. Панцирь состоит из кремнезема, они прозрачны для света, поэтому водоросли могут осуществлять фотосинтез. Интересно, что когда водоросли отмирают, панцири осаждаются на дно водоема и образуют породу диатомит. Это легкая, прочная порода, кроме всего прочего, она может использоваться как фильтр. Следующие водоросли – эвгленовые – тоже относятся к одноклеточным. Ботаники относят их к растениям, а зоологи – к простейшим животным. Так получается, потому что ботаники считают, что если в организмах содержится хлорофилл, если это автотрофы, к тому же еще и фотоавтотрофы –то это растения; а зоологи считают, что если организмы могут двигаться, то это животные. К тому же у этих водорослей есть еще некоторые особенности, характерные для животных. В частности, они могут терять хлорофилл и питаться уже готовыми органическими веществами (то есть они гетеротрофы). Также у этих водорослей есть жгутик, благодаря которому они движутся. Причем движутся очень интересно. Это движение так и называется – эвгленоидным. Жгутик вращается и продвигает клетку вперед заостренным концом. Следующие представители водорослей – это бурые и красные водоросли. Называются они так, потому что бурые водоросли содержат хлорофилл и, кроме того, желтые и оранжевые пигменты, которые помогают улавливать свет и помогают осуществлять фотосинтез. Бурые водоросли – это многоклеточные водоросли, обитающие исключительно в соленых водах. Тело бурых водорослей может быть устроено очень сложно, но, тем не менее, это все слоевище. К бурым водорослям относится небезызвестная морская капуста ламинария, которую можно есть, а также саргассум, единственная бурая водоросль, которая не прикрепляется к субстрату, а плавает сама по себе. Они замечательны тем, что накапливают много йода, содержащегося в морской воде, и употребление их в пищу довольно полезное занятие. Красные водоросли – совершенно особая группа водорослей, которая благодаря особым ферментам способна обитать на больших глубинах. До пятисот метров могут спускаться эти водоросли, но, тем не менее, улавливать на этой глубине то ничтожное количество света, которое туда доходит. Красные водоросли также могут быть устроены достаточно сложно, но это все – слоевища. Настоящих органов ни у каких водорослей нет. Еще две группы многоклеточных водорослей: зеленые и харовые водоросли. Зеленые водоросли содержат, в основном, пигмент хлорофилл. Среди них бывают водоросли самой разнообразной формы: кустистые, нитчатые, слоевидные. Но у них всех клетки не дифференцированы. Зеленые водоросли имеют большое значение в эволюции растений. Считается, что именно от них произошли высшие растения, которые являются сухопутными наземными растениями. И еще одна группа водорослей - харовые водоросли. Они устроены совершенно необычно. По строению они похожи на хвощи. Их тело состоит из отдельных члеников, ветвеподобных образований. Значение водорослей для создания морских экосистем очень большое. В основном, все пищевые цепи в морях и океанах начинаются с планктонных водорослей. Водоросли являются строителями экосистем в шельфовой, прибрежной, зоне и большую роль некоторые красные водоросли играют в строении коралловых рифов. То есть, коралловые рифы строятся не только кораллами, но и красными водорослями, в теле которых тоже может откладываться известь. |
|
|
|